• تسجيل الدخول
  • تسجيل
    • تسجيل الدخول
    • تسجيل
Lyle Gabel
الحسابات الاجتماعية
  • موقع الكتروني

    https://www.zamsh.com/author/busotter2/

Lyle Gabel, 19

Algeria

حولك

Taking Anabolic Steroids After A Sport Injury

Spectroscopic Monitoring of Melt‑Extrusion (Melt‑Extrusion) in Pharmaceutical Manufacturing

– Current State of Knowledge & Emerging Directions



---




1. Why is melt‑extrusion important in pharma?


Melt‑extrusion (also called "melt‑extrusion processing" or simply "melt‑extrusion") is a continuous, solvent‑free technique that combines polymeric excipients with active pharmaceutical ingredients (APIs) to produce uniform drug‑loaded films, pellets, tablets and 3D‑printed filaments.

Key advantages:




Feature Benefit


Continuous processing High throughput, lower batch variability


Solvent‑free Eliminates solvent recovery & toxicity issues


Thermal compatibility APIs can be incorporated at moderate temperatures (≈50–120 °C)


Mechanical property tuning Via polymer selection or additives


Versatile output formats 2D films, 3D printed filaments, pellets


Because of these strengths, melt extrusion has become a cornerstone for "green" pharmaceutical manufacturing.



---




2. Why Polymers Matter in Melt Extrusion


In melt extrusion the polymer matrix acts as both carrier and stabilizer. Its properties determine:




Polymer Property Impact on Formulation


Glass Transition Temperature (Tg) Governs melt temperature; high Tg → higher melt viscosity, need for higher shear/temperature.


Melt Viscosity Affects extrusion stability; too low → segregation; too high → over‑shear, degradation.


Thermal Stability / Degradation Temperature Must exceed processing temperature to avoid polymer or API breakdown.


Crystallinity Amorphous polymers (e.g., EVA) often provide better dispersibility of APIs.


Surface Energy & Compatibilization Determines adhesion between polymer matrix and API particles; can affect drug release profiles.


---




3. Polymer–API Interaction Mechanisms




Physical Dispersion / Intercalation


- APIs are dispersed as fine micro‑ or nano‑particles within the polymer matrix.

- For crystalline APIs, intercalation into amorphous EVA can increase API solubility.





Plasticization and Swelling


- EVA’s soft segments allow plasticizer‐like behavior of some APIs (e.g., hydrophobic drugs) that swell or plasticize the matrix, reducing glass transition temperature and increasing chain mobility.



Thermal Stability / Degradation Pathways


- The presence of certain functional groups in the API can catalyze degradation of EVA during extrusion (e.g., acid–base interactions).

- Conversely, EVA may stabilize labile APIs by forming hydrogen bonds that reduce volatility.





Morphology and Phase Separation


- Depending on miscibility, the system can exhibit single‐phase or microphase separated morphology, affecting mechanical properties such as tensile strength and modulus.



Diffusion and Release Kinetics


- EVA’s glassy/crystalline nature controls diffusion coefficients of the API; crystalline domains hinder diffusion, while amorphous regions facilitate it.

- This has implications for controlled release formulations in pharmaceutical applications.





Thermal Properties


- The glass transition temperature (Tg) and melting point (Tm) of EVA can shift due to polymer–drug interactions, influencing processing windows.





Summary


The relationship between the chemical structures of a drug molecule and the physical properties of its formulation is complex but fundamentally governed by molecular descriptors that capture size, shape, flexibility, electronic distribution, and polarizability. By integrating these descriptors with advanced machine learning algorithms—especially deep neural networks and graph-based models—researchers can predict how a given drug will behave in various formulation contexts (solubility, stability, viscosity, etc.) and thus guide rational formulation design.



Key points:





Descriptors: Molecular weight, TPSA, LogP, H-bond counts, rotatable bonds, ring count, polarizability, dipole moment, etc.


Physical Properties: Solubility, melting point, stability, viscosity, hygroscopicity, permeability, dissolution rate, etc.


Machine Learning Models: Random forests, gradient boosting, support vector machines, neural networks (feed-forward, CNNs), graph neural networks.


Integration: Multi-task learning for simultaneous prediction of multiple properties; transfer learning from large datasets to specific tasks; explainability methods to interpret predictions.



This comprehensive overview should serve as a foundational guide for researchers looking to predict pharmaceutical properties of compounds using machine-learning techniques.

معلومات الشخصي

الأساسية

جنس

الذكر

اللغة المفضلة

الإنجليزية

تبدو

ارتفاع

183cm

لون الشعر

أسود

أبلغ عن مستخدم.
إرسال تكاليف الهدايا 50 قروض

ك ArmenianMatch رصيد الاعتمادات

0 قروض

شراء إئتمانات
دردشة

لقد وصلت إلى الحد اليومي الخاص بك, يمكنك الدردشة مع أشخاص جدد بعد , لا استطيع الانتظار؟ هذه الخدمة تكلفك 30 قروض.

شراء إئتمانات
حقوق النشر © 2025 ArmenianMatch. كل الحقوق محفوظة.
  • معلومات عنا
  •  - 
  • شروط
  •  - 
  • سياسة خاصة
  •  - 
  • اتصل
لغة
  • الإنجليزية
  • عربى
  • هولندي
  • الفرنسية
  • ألمانية
  • الإيطالي
  • البرتغالية
  • الروسية
  • الأسبانية
قريب
مميز قريب
قريب